Code for Quiz 6, more dplyr and our first interactive chart using echarts4r
drug_cos.csv
, health_cos.csv
in to R and assign to the variables drug_cos
and health_cos
, respectivelydrug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse
to get a glimpse of the datadrug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - …
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - …
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - …
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - …
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - …
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - …
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - …
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - …
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - …
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - …
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - …
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - …
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - …
Start with drug_cos
Extract observations for the ticker MRK from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker == "MRK")
drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc… New Jer… 0.305 0.649 0.131 0.15 0.114
2 MRK Merc… New Jer… 0.33 0.652 0.13 0.182 0.113
3 MRK Merc… New Jer… 0.282 0.615 0.1 0.123 0.089
4 MRK Merc… New Jer… 0.567 0.603 0.282 0.409 0.248
5 MRK Merc… New Jer… 0.298 0.622 0.112 0.136 0.096
6 MRK Merc… New Jer… 0.254 0.648 0.098 0.117 0.092
7 MRK Merc… New Jer… 0.278 0.678 0.06 0.162 0.063
8 MRK Merc… New Jer… 0.313 0.681 0.147 0.206 0.199
# … with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos
Assign the output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MRK Merc… New Jer… 0.305 0.649 0.131 0.15 0.114
2 MRK Merc… New Jer… 0.33 0.652 0.13 0.182 0.113
3 MRK Merc… New Jer… 0.282 0.615 0.1 0.123 0.089
4 MRK Merc… New Jer… 0.567 0.603 0.282 0.409 0.248
5 MRK Merc… New Jer… 0.298 0.622 0.112 0.136 0.096
6 MRK Merc… New Jer… 0.254 0.648 0.098 0.117 0.092
7 MRK Merc… New Jer… 0.278 0.678 0.06 0.162 0.063
8 MRK Merc… New Jer… 0.313 0.681 0.147 0.206 0.199
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker
, name
, location
, and industry
are the same for all the observationsco_name <- combo_df %>%
distinct(name) %>%
pull()
co_location <- combo_df %>%
distinct(location) %>%
pull()
co_industry <- combo_df %>%
distinct(industry) %>%
pull()
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Drug Manufacturers - General is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General industry group.
Start with combo_df
Select variables (in this order): year
, grossmargin
, netmargin
, revenue
, gp
, netincome
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin,
revenue, gp, netincome)
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 48047000000 31176000000 6272000000
2 2012 0.652 0.13 47267000000 30821000000 6168000000
3 2013 0.615 0.1 44033000000 27079000000 4404000000
4 2014 0.603 0.282 42237000000 25469000000 11920000000
5 2015 0.622 0.112 39498000000 24564000000 4442000000
6 2016 0.648 0.098 39807000000 25777000000 3920000000
7 2017 0.678 0.06 40122000000 27210000000 2394000000
8 2018 0.681 0.147 42294000000 28785000000 6220000000
grossmargin_check
to compare with the variable grossmargin
. They should be equal.
*Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 4.80e10 3.12e10 6.27e 9
2 2012 0.652 0.13 4.73e10 3.08e10 6.17e 9
3 2013 0.615 0.1 4.40e10 2.71e10 4.40e 9
4 2014 0.603 0.282 4.22e10 2.55e10 1.19e10
5 2015 0.622 0.112 3.95e10 2.46e10 4.44e 9
6 2016 0.648 0.098 3.98e10 2.58e10 3.92e 9
7 2017 0.678 0.06 4.01e10 2.72e10 2.39e 9
8 2018 0.681 0.147 4.23e10 2.88e10 6.22e 9
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.649 0.131 4.80e10 3.12e10 6.27e 9
2 2012 0.652 0.13 4.73e10 3.08e10 6.17e 9
3 2013 0.615 0.1 4.40e10 2.71e10 4.40e 9
4 2014 0.603 0.282 4.22e10 2.55e10 1.19e10
5 2015 0.622 0.112 3.95e10 2.46e10 4.44e 9
6 2016 0.648 0.098 3.98e10 2.58e10 3.92e 9
7 2017 0.678 0.06 4.01e10 2.72e10 2.39e 9
8 2018 0.681 0.147 4.23e10 2.88e10 6.22e 9
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netincome_percent = max(netincome / revenue) * 100
)
# A tibble: 9 x 5
industry mean_netmargin_… median_netmargi… min_netmargin_p…
* <chr> <dbl> <dbl> <dbl>
1 Biotech… -4.66 7.62 -197.
2 Diagnos… 13.1 12.3 0.399
3 Drug Ma… 19.4 19.5 -34.9
4 Drug Ma… 5.88 9.01 -76.0
5 Healthc… 3.28 3.37 -0.305
6 Medical… 6.10 6.46 1.40
7 Medical… 12.4 14.3 -56.1
8 Medical… 1.70 1.03 -0.102
9 Medical… 12.3 14.0 -47.1
# … with 1 more variable: max_netincome_percent <dbl>
mean_netmargin_percent for the industry Diagnostics & Research is 13.1%
median_netmargin_percent for the industry Diagnostics & Research is 12.3%
min_netmargin_percent for the industry Diagnostics & Research is 0.399%
max_netmargin_percent for the industry Diagnostics & Research is 26.3%
Fill in the blanks
Use the health_cos data
Extract observations for the ticker SEE QUIZ from health_cos and assign to the variable health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "BMY")
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BMY Bris… 2.12e10 1.56e10 3.84e9 3.71e9 3.30e10 17103000000
2 BMY Bris… 1.76e10 1.30e10 3.90e9 1.96e9 3.59e10 22259000000
3 BMY Bris… 1.64e10 1.18e10 3.73e9 2.56e9 3.86e10 23356000000
4 BMY Bris… 1.59e10 1.19e10 4.53e9 2.00e9 3.37e10 18766000000
5 BMY Bris… 1.66e10 1.27e10 5.92e9 1.56e9 3.17e10 17324000000
6 BMY Bris… 1.94e10 1.45e10 5.01e9 4.46e9 3.37e10 17360000000
7 BMY Bris… 2.08e10 1.47e10 6.48e9 1.01e9 3.36e10 21704000000
8 BMY Bris… 2.26e10 1.60e10 6.34e9 4.92e9 3.50e10 20859000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct. Go to the help pane to see what distinct does
In the console, type ?pull. Go to the help pane to see what pull does
Run the code below
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Bristol Myers Squibb Co"
co_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
You can take output from your code and include it in your text.
In following chuck
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Bristol Myers Squibb Co is a member of the Drug Manufacturers - General group.
df
glimpse
to glimpse the data for the plotsdf %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
ggplo
t to initialize the chartdf
industry
is mapped to the x-axis
med_rnd_rev
med_rnd_rev
is mapped to the y-axisgeom_col
scale_y_continuous
to label the y-axis with percentcoord_flip()
to flip the coordinateslabs
to add title, subtitle and remove x and y-axestheme_ipsum()
from the hrbrthemes package to improve the themeggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-05-joining-data"))
df
arrange
to reorder med_rnd_rev
e_charts
to initialize a chart
industry
is mapped to the x-axise_bar
with the values of med_rnd_rev
e_flip_coords()
to flip the coordinatese_title
to add the title and the subtitlee_legend
to remove the legendse_x_axis
to change format of labels on x-axis to percente_y_axis
to remove labels on y-axis-df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")