Using computer simulation. Based on examples from the infer package. Code for Quiz 13.
Load the R package we will use.
The data this quiz is a subset of HR
Set random seed generator to 123 set.seed(123) hr_3_tidy.csv is the name of your data subset
Read it into and assign to hr
hr <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv",
col_types = "fddfff")
skim(hr)
Name | hr |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
gender | 0 | 1 | FALSE | 2 | fem: 253, mal: 247 |
evaluation | 0 | 1 | FALSE | 4 | bad: 148, fai: 138, goo: 122, ver: 92 |
salary | 0 | 1 | FALSE | 6 | lev: 98, lev: 87, lev: 87, lev: 86 |
status | 0 | 1 | FALSE | 3 | fir: 196, pro: 172, ok: 132 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
age | 0 | 1 | 39.41 | 11.33 | 20 | 29.9 | 39.35 | 49.1 | 59.9 | ▇▇▇▇▆ |
hours | 0 | 1 | 49.68 | 13.24 | 35 | 38.2 | 45.50 | 58.8 | 79.9 | ▇▃▃▂▂ |
The mean hours worked per week is: 49.7
#Q: Is the mean number of hours worked per week 48? specify that hours is the variable of interest
hr %>%
specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
hours
<dbl>
1 49.6
2 39.2
3 63.2
4 42.2
5 54.7
6 54.3
7 37.3
8 45.6
9 35.1
10 53
# … with 490 more rows
hypothesize that the average hours worked is 48
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
hours
<dbl>
1 49.6
2 39.2
3 63.2
4 42.2
5 54.7
6 54.3
7 37.3
8 45.6
9 35.1
10 53
# … with 490 more rows
#generate 1000 replicates representing the null hypothesis
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups: replicate [1,000]
replicate hours
<int> <dbl>
1 1 35.0
2 1 57.4
3 1 52.7
4 1 47.8
5 1 69.7
6 1 33.6
7 1 68.5
8 1 59.0
9 1 41.2
10 1 36.9
# … with 499,990 more rows
The output has 500,000 rows
#calculate the distribution of statistics from the generated data - Assign the output null_t_distribution - Display null_t_distribution
null_t_distribution <- hr %>%
specify(response = age) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "t")
null_t_distribution
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 0.687
2 2 0.464
3 3 1.58
4 4 1.05
5 5 -0.453
6 6 1.01
7 7 2.51
8 8 -1.15
9 9 1.41
10 10 -0.292
# … with 990 more rows
#visualize the simulated null distribution
visualize(null_t_distribution)
#calculate the statistic from your observed data - Assign the output observed_t_statistic - Display observed_t_statistic
observed_t_statistic <- hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
calculate(stat = "t")
observed_t_statistic
# A tibble: 1 x 1
stat
<dbl>
1 2.83
#get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0.006
#shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
If the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no
#Question: 2 sample t-test hr_3_tidy.csv is the name of your data subset - Read it into and assign to hr_2 - Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv",
col_types = "fddfff")
#Q: Is the average number of hours worked the same for both genders? #use skim to summarize the data in hr_2 by gender
hr_2 %>%
group_by(gender) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | gender |
Variable type: factor
skim_variable | gender | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
evaluation | male | 0 | 1 | FALSE | 4 | bad: 72, fai: 67, goo: 61, ver: 47 |
evaluation | female | 0 | 1 | FALSE | 4 | bad: 76, fai: 71, goo: 61, ver: 45 |
salary | male | 0 | 1 | FALSE | 6 | lev: 47, lev: 43, lev: 43, lev: 42 |
salary | female | 0 | 1 | FALSE | 6 | lev: 51, lev: 46, lev: 45, lev: 43 |
status | male | 0 | 1 | FALSE | 3 | fir: 98, pro: 81, ok: 68 |
status | female | 0 | 1 | FALSE | 3 | fir: 98, pro: 91, ok: 64 |
Variable type: numeric
skim_variable | gender | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | male | 0 | 1 | 38.23 | 10.86 | 20 | 28.9 | 37.9 | 47.05 | 59.9 | ▇▇▇▇▅ |
age | female | 0 | 1 | 40.56 | 11.67 | 20 | 31.0 | 40.3 | 50.50 | 59.8 | ▆▆▇▆▇ |
hours | male | 0 | 1 | 49.55 | 13.11 | 35 | 38.4 | 45.4 | 57.65 | 79.9 | ▇▃▂▂▂ |
hours | female | 0 | 1 | 49.80 | 13.38 | 35 | 38.2 | 45.6 | 59.40 | 79.8 | ▇▂▃▂▂ |
#Use geom_boxplot to plot distributions of hours worked by gender
hr_2 %>%
ggplot(aes(x = gender, y = hours)) +
geom_boxplot()
#Specify the variables of interest are hours and gender
hr_2 %>%
specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 49.6 male
2 39.2 female
3 63.2 female
4 42.2 male
5 54.7 male
6 54.3 female
7 37.3 female
8 45.6 female
9 35.1 female
10 53 male
# … with 490 more rows
#Hypothesize that the number of hours worked and gender are independent
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 49.6 male
2 39.2 female
3 63.2 female
4 42.2 male
5 54.7 male
6 54.3 female
7 37.3 female
8 45.6 female
9 35.1 female
10 53 male
# … with 490 more rows
#Generate 1000 replicates representing the null hypothesis
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours gender replicate
<dbl> <fct> <int>
1 45.1 male 1
2 63.8 female 1
3 46.1 female 1
4 39.9 male 1
5 51.6 male 1
6 56.6 female 1
7 42.1 female 1
8 35.3 female 1
9 73.6 female 1
10 35.8 male 1
# … with 499,990 more rows
The output has 500,000 rows
null_distribution_2_sample_permute <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t", order = c("female", "male"))
null_distribution_2_sample_permute
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 -0.872
2 2 0.560
3 3 -0.0900
4 4 -1.14
5 5 -0.779
6 6 -0.314
7 7 -0.592
8 8 1.28
9 9 0.828
10 10 0.000502
# … with 990 more rows
#Visualize the simulated null distribution
visualize(null_distribution_2_sample_permute)
#Calculate the statistic from your observed data - Assign the output observed_t_2_sample_stat - Display observed_t_2_sample_stat
observed_t_2_sample_stat <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
calculate(stat = "t", order = c("female", "male"))
observed_t_2_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 0.208
#Get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0.872
#Shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
If the p-value < 0.05? no
Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes
#Question: ANOVA hr_1_tidy.csv is the name of your data subset - Read it into and assign to hr_anova - Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
col_types = "fddfff")
#Q: Is the average number of hours worked the same for all three status (fired, ok and promoted) ? use skim to summarize the data in hr_anova by status
hr_anova %>%
group_by(status) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | status |
Variable type: factor
skim_variable | status | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
gender | fired | 0 | 1 | FALSE | 2 | fem: 96, mal: 89 |
gender | ok | 0 | 1 | FALSE | 2 | fem: 77, mal: 76 |
gender | promoted | 0 | 1 | FALSE | 2 | fem: 87, mal: 75 |
evaluation | fired | 0 | 1 | FALSE | 4 | bad: 65, fai: 63, goo: 31, ver: 26 |
evaluation | ok | 0 | 1 | FALSE | 4 | bad: 69, fai: 59, goo: 15, ver: 10 |
evaluation | promoted | 0 | 1 | FALSE | 4 | ver: 63, goo: 60, fai: 20, bad: 19 |
salary | fired | 0 | 1 | FALSE | 6 | lev: 41, lev: 37, lev: 32, lev: 32 |
salary | ok | 0 | 1 | FALSE | 6 | lev: 40, lev: 37, lev: 29, lev: 23 |
salary | promoted | 0 | 1 | FALSE | 6 | lev: 37, lev: 35, lev: 29, lev: 23 |
Variable type: numeric
skim_variable | status | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | fired | 0 | 1 | 38.64 | 11.43 | 20.2 | 28.30 | 38.30 | 47.60 | 59.6 | ▇▇▇▅▆ |
age | ok | 0 | 1 | 41.34 | 12.11 | 20.3 | 31.00 | 42.10 | 51.70 | 59.9 | ▆▆▆▆▇ |
age | promoted | 0 | 1 | 42.13 | 10.98 | 21.0 | 33.40 | 42.95 | 50.98 | 59.9 | ▆▅▆▇▇ |
hours | fired | 0 | 1 | 41.67 | 7.88 | 35.0 | 36.10 | 38.90 | 43.90 | 75.5 | ▇▂▁▁▁ |
hours | ok | 0 | 1 | 48.05 | 11.65 | 35.0 | 37.70 | 45.60 | 56.10 | 78.2 | ▇▃▃▂▁ |
hours | promoted | 0 | 1 | 59.27 | 12.90 | 35.0 | 51.12 | 60.10 | 70.15 | 79.7 | ▆▅▇▇▇ |
#Use geom_boxplot to plot distributions of hours worked by status
hr_anova %>%
ggplot(aes(x = status, y = hours)) +
geom_boxplot()
#Specify the variables of interest are hours and status
hr_anova %>%
specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 36.5 fired
2 55.8 ok
3 35 fired
4 52 promoted
5 35.1 ok
6 36.3 ok
7 40.1 promoted
8 42.7 fired
9 66.6 promoted
10 35.5 ok
# … with 490 more rows
#Hypothesize that the number of hours worked and status are independent
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 36.5 fired
2 55.8 ok
3 35 fired
4 52 promoted
5 35.1 ok
6 36.3 ok
7 40.1 promoted
8 42.7 fired
9 66.6 promoted
10 35.5 ok
# … with 490 more rows
#Generate 1000 replicates representing the null hypothesis
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence") %>%
generate(reps = 1,000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 3
# Groups: replicate [1]
hours status replicate
<dbl> <fct> <int>
1 71.3 fired 1
2 73.7 ok 1
3 61.4 fired 1
4 55.8 promoted 1
5 35.4 ok 1
6 50.1 ok 1
7 38 promoted 1
8 50.7 fired 1
9 76.3 promoted 1
10 55.7 ok 1
# … with 490 more rows
The output has 500 rows
#Calculate the distribution of statistics from the generated data - Assign the output null_distribution_anova - Display null_distribution_anova
null_distribution_anova <- hr_anova %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")
null_distribution_anova
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 0.789
2 2 0.110
3 3 0.727
4 4 2.39
5 5 0.0832
6 6 0.146
7 7 0.118
8 8 0.309
9 9 0.434
10 10 1.74
# … with 990 more rows
#Visualize the simulated null distribution
visualize(null_distribution_anova)
#Calculate the statistic from your observed data - Assign the output observed_f_sample_stat - Display observed_f_sample_stat
observed_f_sample_stat <- hr_anova %>%
specify(response = hours, explanatory = status) %>%
calculate(stat = "F")
observed_f_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 115.
#Get_p_value from the simulated null distribution and the observed statistic
null_distribution_anova %>%
get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
p_value
<dbl>
1 0
#Shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
If the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no